Friedel Oscillations of Vortex Bound States under Extreme Quantum Limit in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>KCa</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:msub><mml:mrow><mml:mi>As</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:…

نویسندگان
چکیده

We report the observation of discrete vortex bound states with energy levels deviating from widely believed ratio 1:3:5 in vortices an iron based superconductor KCa2Fe4As4F2 through scanning tunneling microcopy (STM). Meanwhile Friedel oscillations are also observed for first time related vortices. By doing self-consistent calculations Bogoliubov-de Gennes equations, we find that at extreme quantum limit, superconducting order parameter exhibits a Friedel-like oscillation, which modifies and explains why it deviates 1:3:5. The can be roughly interpreted by theoretical calculations, however some features high energies could not explained. attribute this discrepancy to influence nearby impurities. Our combined STM measurement illustrate generalized feature type-II superconductors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb Drag in the Extreme Quantum Limit

Coulomb drag resulting from interlayer electron-electron scattering in double layer 2D electron systems in a high magnetic field has been measured. Within the lowest Landau level the observed drag resistance exceeds its zero magnetic value by factors of typically 1000. At half-filling of the lowest Landau level in each layer (n ­ 1y2) the data suggest that our bilayer systems are much more stro...

متن کامل

Electric spaser in the extreme quantum limit.

We consider theoretically the spaser that is excited electrically via a nanowire with ballistic quantum conductance. We show that, in the extreme quantum regime, i.e., for a single conductance-quantum nanowire, the spaser with a core made of common plasmonic metals, such as silver and gold, is fundamentally possible. For ballistic nanowires with multiple-quanta or nonquantized conductance, the ...

متن کامل

Viewing Majorana Bound States by Rabi Oscillations

We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coup...

متن کامل

A new class of quantum bound states: diprotons in extreme magnetic fields

This paper considers the possibility that two charged particles with an attractive short-ranged potential between them which is not strong enough to form bound states in free space, may bind in uniform magnetic fields. It is shown that in the formal limit where Coulomb repulsion is negligible (q → 0 and B0 → ∞ with qB0 fixed, where q is the charge and B0 the field strength) there always exists ...

متن کامل

Bound states induced giant oscillations of the conductance in the quantum Hall regime.

We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2021

ISSN: ['1079-7114', '0031-9007', '1092-0145']

DOI: https://doi.org/10.1103/physrevlett.126.257002